产品展示PRODUCTS

您当前的位置:首页 > 产品展示 > 水生态与藻类 > 水质分析与监测 > 水环境自动控制系统
水环境自动控制系统
产品时间:2022-07-11
水环境自动控制系统能够对水温、溶解氧、pH/CO2、盐度等环境参数进行监测、记录和调节。仅需一台电脑,即可同时对多个鱼缸、水族箱的一个或者多个参数进行同步、自动调控,使之达到预设值或者运行自定义程序。

水环境自动控制系统能够对水温、溶解氧、pH/CO2、盐度等环境参数进行监测、记录和调节。仅需一台电脑,即可同时对多个鱼缸、水族箱的一个或者多个参数进行同步、自动调控,使之达到预设值或者运行自定义程序。

61.png


工作时,多台测量设备连接到一部电脑,软件通过蓝牙(无线)或者以太网(有线)控制水泵或者电磁阀,响应测量数据进行实时调控。

软件支持Win10/11系统,简单易用,对于四个环境参数的任意一个,它使数据记录、传感器校准、测量单位的更改、自动程序的设定等步骤变得轻松友好。使用者可根据具体的研究应用自定义运行程序,包括分级调节或者正弦模式,以模拟日变化等自然波动。而且程序能够被保存和加载,以便进行快速、一致性的设置。

 

功能特点

1.新颖直观的软件界面,适用于Win10Win11

2.仅需一台电脑,通过多种传输方式(蓝牙、以太网和USB)和多台设备相连

3.内置程序编辑功能—可保存和加载自定义程序文件

4.温度、盐度、压强实时补偿

5.具备长期监测/记录/调节的性能

6.数据带时间戳,以.csvExcel)文件格式保存

 

具体配置

1.OmniCTRL软件

软件既能够和监测水环境参数的设备无缝通信,也能够通过控制水泵/电磁阀对水环境参数进行调节。配合相应的硬件,可同步调控不同的参数,如水温和溶解氧;既能单向调控(参数调高或调低),又能双向调控(参数调高和调低)。软件实时显示实验过程中的每个水环境参数。所有图表都能够按照喜好进行编辑,导出至Excel或保存成图像。所有记录数据也能够被保存和导出成.csv文件,以便于在Excel中进一步分析。

   

62.png


2.PowerX4工业级四位插座及远距离蓝牙适配器

PowerX4四位插座能够实现基于软件驱动的控制,通过以太网或蓝牙的方式对水泵或电磁阀的开闭进行控制。每个延时控制的电参数(例如输入电压和功耗等)能够被软件监测和记录,以便于对所连接的设备进行诊断。远距离蓝牙适配器包括1类蓝牙适配器和外接天线,能够将常规PC2类蓝牙)的无线距离翻倍。

 

63.png


3.水环境监测和控制单元

可分为温度、溶解氧、盐度、pH/CO2、溶解氧&温度、盐度&温度、pH/CO2&温度共计7种配置。每种配置包括相应的监测单元(溶解氧测量仪、pH测量仪、盐度测量仪等)和控制单元(水泵、电磁阀、管路等)。如下图为pH/CO2自动控制系统组成如下图(分别为单向调控和双向调控):

 

64.png


 

应用案例

 


 

参考文献

1.Cline, A.J., Hamilton, S.L., and Logan, C.A. (2020). Effects of multiple climate change stressors on gene expression in blue rockfish (Sebastes mystinus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 239, 110580.

2.Duckworth, C.G., Picariello, C.R., Thomason, R.K., Patel, K.S., and Bielmyer-Fraser, G.K. (2017). Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and zinc or nickel exposure. Aquatic Toxicology 182, 120–128.

3.Hamilton, S.L., Kashef, N.S., Stafford, D.M., Mattiasen, E.G., Kapphahn, L.A., Logan, C.A., Bjorkstedt, E.P., and Sogard, S.M. (2019). Ocean acidification and hypoxia can have opposite effects on rockfish otolith growth. Journal of Experimental Marine Biology and Ecology 521, 151245.

4.Huang, X., Jiang, X., Sun, M., Dupont, S., Huang, W., Hu, M., Li, Q., and Wang, Y. (2018). Effects of copper on hemocyte parameters in the estuarine oyster Crassostrea rivularis under low pH conditions. Aquatic Toxicology 203, 61–68.

5.Khan, F.U., Hu, M., Kong, H., Shang, Y., Wang, T., Wang, X., Xu, R., Lu, W., and Wang, Y. (2020). Ocean acidification, hypoxia and warming impair digestive parameters of marine mussels. Chemosphere 256, 127096.

6.Kong, H., Wu, F., Jiang, X., Wang, T., Hu, M., Chen, J., Huang, W., Bao, Y., and Wang, Y. (2019). Nano-TiO2 impairs digestive enzyme activities of marine mussels under ocean acidification. Chemosphere 237, 124561.

7.Kraskura, K., and Nelson, J.A. (2020). Hypoxia tolerance is unrelated to swimming metabolism of wild, juvenile striped bass (Morone saxatilis). Journal of Experimental Biology 223, jeb217125.

8.Mackey, T.E., Hasler, C.T., Durhack, T., Jeffrey, J.D., Macnaughton, C.J., Ta, K., Enders, E.C., and Jeffries, K.M. (2021). Molecular and physiological responses predict acclimation limits in juvenile brook trout (Salvelinus fontinalis). Journal of Experimental Biology 224, jeb241885.

9.Murie, K.A., and Bourdeau, P.E. (2021). Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance. Sci Rep 11, 1–12.

10.Shen, Y., Zhang, Y., Xiao, Q., Gan, Y., Wang, Y., Pang, G., Huang, Z., Yu, F., Luo, X., Ke, C., et al. (2021). Distinct metabolic shifts occur during the transition between normoxia and hypoxia in the hybrid and its maternal abalone. Science of The Total Environment 794, 148698.

11.Shrivastava, J., Ndugwa, M., Caneos, W., and De Boeck, G. (2019). Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. Aquatic Toxicology 212, 54–69.

12.Siddiqui, S., and Bielmyer-Fraser, G.K. (2015). Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and copper exposure. Aquatic Toxicology 167, 228–239.

13.Sui, Y., Zheng, L., Chen, Y., Xue, Z., Cao, Y., Mohsen, M., Nguyen, H., Zhang, S., Lv, L., and Wang, C. (2022). Combined effects of short term exposure to seawater acidification and microplastics on the early development of the oyster Crassostrea rivularis. Aquaculture 549, 737746.

14.Wingert, C.J., and Cochlan, W.P. (2021). Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae 107, 102030.

15.Zrini, Z.A., Sandrelli, R.M., and Gamperl, A.K. (2021). Does hydrostatic pressure influence lumpfish (Cyclopterus lumpus) heart rate and its response to environmental challenges? Conservation Physiology 9, coab058.


留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7